The effect of predation on translocated G. polyphemus is not well documented, but long-lived, slow growing species like G. polyphemus are particularly impacted by the loss of adults in the population, so predator management is likely important for at least the initial maintenance of these populations (Ashton and Burke 2007. J. Wildl. Manag. 71:763–783; Tuberville et al. 2008. Biol. Conserv. 141:2690–2697).

On 6 and 9 October 2018 I used a Nikon CoolPix with an 83’ zoom lens to photograph basking Graptemys geographicus at two sites on the Clinch River in Russell County, Virginia, and six and two sites, respectively, on the North and Middle Forks of the Holston River in Smyth County, Virginia. A total of 90 G. geographicus were seen, of which 60 were photographed with enough clarity to determine eye color (24 from the Clinch River, 20 from the North Fork of the Holston, and 16 from the Middle Fork). All photographed turtles had dark eyes (Fig. 1).

This second report of dark brown iris coloration in Graptemys is noteworthy because it concerns a distant relative of the species from the first report and because the populations in question are not geographically isolated. The previous report of dark iris coloration in G. pseudogeographica were from sites throughout an isolated Gulf Coastal river drainage, the Calcasieu River (Lindeman et al., op. cit.). The rivers that yielded the present results are part of the Tennessee River drainage, a major southeastern portion of the greater Mississippi River drainage. A yellow iris with a black stripe through it is typical of populations of G. geographicus in Lake Erie in Pennsylvania, the Susquehanna River drainage in New York and Pennsylvania, and several sites in the Mississippi River drainage, including the Current River in Missouri, the East Fork of the White River and the Wabash River in Indiana, and the Elk River, a Tennessee River tributary that flows from central Tennessee into Alabama (P. Lindeman, unpubl. observ.). It would be interesting to know how far downstream of the western Virginia localities this characteristic extends, as well as its genetic basis and whether that genetic basis is the same or different for the Virginia populations of G. geographicus and the Calcasieu River drainage populations of G. pseudogeographica. Researchers should report additional incidences of atypical eye coloration for populations of Graptemys species.

PETE R.V. LINDEMAN. Department of Biology and Health Sciences, 126 Cooper Hall, Edinboro University of Pennsylvania, Edinboro, Pennsylvania 16444, USA; e-mail plindeman@edinboro.edu.

KINOSTERNON HIRITIPES (Rough-footed Mud Turtle). **JUVENILE HABITAT.** Hatchling and juvenile turtles are typically under-sampled in ecological studies because these smaller size-classes are secretive and inconspicuous, occur at low densities, and often prove difficult to trap (Muldoon and Burke 2012. Can. J. Zool. 90:651–662; Selman 2018. Herpetol. Conserv. Biol. 13:399–407). Consequently, the ecology of hatchling and juvenile turtles is poorly known, despite the importance of these size-classes in life-history models and management plans (Muldoon and Burke, op. cit.). In particular, there is a notable paucity of information concerning the habitats used by juvenile turtles, which is regrettable given these data are critical for conservation planning (Selman, op. cit.). Because juveniles often use different habitats than adults (Reich et al. 2007. Biol. Lett. 3:712–714), managers cannot assume that protection of adult habitat confers protection to juvenile life-stages (Selman, op. cit.). Thus, without specific knowledge of juvenile habitats these areas may...